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Abstract—We study the problem of transmitting a sequence of
messages (streaming messages) through a multi-link, multi-hop
packet erasure network. Each message must be reconstructed
in-order and under a strict delay constraint. Special cases of our
setting with a single link on each hop have been studied recently
- the case of a single relay-node, is studied in Fong et al [1];
the case of multiple relays, is studied in Domanovitz et al [2].
As our main result, we propose an achievable rate expression
that reduces to previously known results when specialized to
their respective settings. Our proposed scheme is based on the
idea of concatenating single-link codes from [2] in a judicious
manner to achieve the required delay constraints. We propose a
systematic approach based on convex optimization to maximize
the achievable rate in our framework.

I. INTRODUCTION

Real-time interactive video streaming is becoming an inte-

gral part of people’s lives throughout the world. The portion of

the Internet traffic consumed by applications such as remote

learning, remote working, cloud-based augmented reality and

cloud-based multi-person games (all very sensitive to the

latency of the network) is expected to grow significantly in

the upcoming years [3].

The latency experienced by users is impacted by the prop-

agation delay, the processing delay and by errors, which we

model as packet erasures. There are two main mechanisms

to handle packet erasures. Automatic repeat request (ARQ) is

one popular method in which the receiver acknowledges to the

transmitter which packets arrived and which did not, and the

transmitter re-sends the erased packets again. See, e.g. [4]–[6].

While many works focused on improving the efficiency of

ARQ, when considering strict low-latency constraints, none

can overcome its basic requirement, which is that the overall

latency will be higher than a three-time one-way trip delay.

Another mechanism to handle erasures is forward error cor-

rection (FEC). A plurality of works analyzed the guaranteed

rate for streaming codes while assuming a maximal number of

erasures (either a burst or arbitrary) while assuming a single

link between the source and the destination. See e.g., [7]–[11].

In [1], the analysis of streaming codes was extended to a

three-node network with a single link on each hop and a coding

scheme coined symbol-wise decode and forward (SWDF) was

shown to achieve capacity when the maximal number of

erasures occurs in the first link. In [2], the network model

was further extended to multiple nodes with a single link in

each hop and a different coding scheme named state-dependent

symbol-wise decode and forward (SD-SWDF) was shown to

achieve capacity when the maximal number of erasures occurs

in the first link.

Even though in many cases there are multiple links con-

necting each node, basic routing protocols select only a single

forwarding path for the traffic between each source-destination

pair. It is well recognized that using multiple paths between

the source and destination can improve throughput and/or

robustness of transmission. See e.g., [12], [13].

The utilization of multiple paths for improving throughput

was discussed in a plurality of papers [14], [15]. Utilization of

multiple paths for low latency communication was discussed

[16] where reducing the average delay was the focus. The

combination of multiple paths and forward error correction

was discussed in [17], but no guaranteed performance was

derived.

In order to analyze the guaranteed rate of streaming erasure

codes over the relayed network, we analyze an adversarial

channel model. In this setting, the number of erasures per

link is (globally) upper bounded. Our proposed scheme im-

mediately extends to a more general model where the number

of erasures in each sliding window is bounded. This model

provides a tractable approximation to any statistical model and

leads to an insightful analysis and a non-trivial coding scheme.

Further, in many streaming applications, the important figure

of merit is the worst-case guarantee (rather than, for example,

the average performance). Hence, using the adversarial model

provides useful insights on the trade-off between the worst-

case erasure event the coding scheme needs to be prepared

for and the guaranteed rate it can provide.

II. RELAYED NETWORK MODEL

A source node wants to send a sequence of messages

{st}
∞
t=0 to a destination node with the help of H middle

nodes r1, . . . , rH where there are Lj links between node rj−1

and rj (which we denote that the jth hop). We assume links
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Fig. 1: Symbols generated in the H + 2-node relay network at time i.

exists only between node j to node j+1 where each message

consists of k ≥ 0 symbols. We assume each link i in the jth

hop introduces at most N
(j)
i erasures. Every source message

has to be recovered perfectly at the destination within a delay

constraint of T time slots.

We denote N(j) = [N
(j)
1 , . . . , N

(j)
Lj

], and for simplicity, we

denote the set Fn
e , F

n ∪ {∗} (where ∗ indicates an erasure).

This network is depicted in Fig. 1 and formalized below.

Definition 1. Let n(j) = [n
(j)
1 , . . . , n

(j)
Lj

]. An

(n(1),n(2), . . . ,n(H+1), k, T )F-streaming code consists

of the following:

1) A sequence of source messages {st}
∞
t=0 where st ∈ F

k.

2) A list of L1 encoding functions

f
(1)
t,i : Fk × . . .× F

k

︸ ︷︷ ︸

t+1 times

→ F
n
(1)
1 , i ∈ {1, . . . , L1}

used by the source at time t to generate

x
(1)
t,i = f

(1)
t,i (s0, s1, . . . , st).

3) A list of Lj relaying functions for each node j ∈
[1, . . . , H],

f
(j+1)
t,i : F

n
(j)
1

e × . . . × F
n
(j)
1

e
︸ ︷︷ ︸

t+1 times

. . . F
n
(j)
Lj

e × . . . × F

n
(j)
Lj

e
︸ ︷︷ ︸

t+1 times

→ F
n
(j+1)
i ,

i ∈ {1, . . . , Lj} used at the jth node at time t to

generate

x
(j+1)
t,i = f

(j+1)
t,i

(

{y
(j)
0,l }

Lj

l=1, . . . , {y
(j)
t,l }

Lj

l=1

)

.

4) A decoding function

ϕt+T : F
n
(H+1)
1

e × . . . × F
n
(H+1)
1

e
︸ ︷︷ ︸

T+t+1 times

. . . F
n
(H+1)
LH+1

e × . . . × F

n
(H+1)
LH+1

e
︸ ︷︷ ︸

T+t+1 times

→ F
k
,

is used by the destination (node rH+1) at

time t + T to estimate st according to

ŝt = ϕt+T ({y
(H+1)
0,l }

LH+1

l=1 , . . . , {y
(H+1)
t+T,l }

LH+1

l=1 ).

Definition 2. An erasure sequence is a binary se-

quence denoted by e∞ , {et}
∞
t=0, where et =

1{an erasure occurs at time t}.

An N -erasure sequence is an erasure sequence e∞ that

satisfies

∞∑

t=0

e∞t = N . In other words, an N -erasure sequence

specifies N arbitrary erasures on the discrete timeline. The

set of N -erasure sequences is denoted by ΩN .

Definition 3. The mapping gn : Fn ×{0, 1} → F
n
e of an era-

sure channel is defined as gn(x, e) =

{

x if e = 0

∗ if e = 1.
. For any

erasure sequence e∞ and any (n(1),n(2), . . . ,n(H+1), k, T )F-

streaming code, the following input-output relation holds for

the ith link in the jth hop (j ∈ {1, . . . , H + 1}), for each

t ∈ Z+ y
(j)
t,i = g

n
(j)
i

(x
(j)
t,i , e

(j)
t,i ), where e

(j)
t,i ∈ Ω

N
(j)
i

,

i ∈ {1, . . . , Lj}.

Definition 4. An (n(1),n(2), . . . ,n(H+1), k, T )F-streaming

code is said to be (N(1), . . .N(H+1))-achievable if, for any

e
(j)
t,i ∈ Ω

N
(j)
i

, for all j ∈ {1, . . . , H + 1}, for all i ∈

{1, . . . , Lj}, for all t ∈ Z+ and all st ∈ F
k, we have ŝt = st.

Definition 5. The rate of an (n(1),n(2), . . . ,n(H+1), k, T )F-

streaming code is k

max(max(n(1)),...max(n(H+1)))
.

Remark 1. Definition 5 suggests that the rate of a streaming

code over multi-link multi-hop network can be greater than 1.

A. Known results

Three-node network with a single link between the nodes

(H = 1, L1 = L2 = 1):

In [1], it was shown that a coding scheme coined SWDF is

an
(

T −N
(2)
1 + 1, T −N

(1)
1 + 1, T −N

(1)
1 −N

(2)
1 + 1, T

)

F

streaming code which is (N
(1)
1 , N

(2)
1 )-achievable. It was fur-

ther shown that when N1 ≥ N2 this scheme achieves the upper

bound thus capacity is established.

In high-level, this scheme splits the information message

into symbols, encode each symbol such that it is guaranteed

that it will be available at the relay with a different delay (using

diagonally interleaved block codes). The relay then transmits

the recovered symbols such that the overall delay constraint

is met. For further details, see [1].

For example, assume that the source wishes to transmit two

bits [ai, bi] in every channel use over a three-node network

with N
(1)
1 = N

(2)
1 = 1 with an overall delay of T = 3. The

(capacity achieving) SWDF transmission is given in Table I

below. Noting that it is guaranteed that bi is available at the

relay at time i + 1 and ai is available at the relay at time

i + 2 (for any single erasure in the link between the source

and relay), it can be seen that for any single erasure in the

link between the relay and destination, [ai, bi] is guaranteed

to be recovered at the destination at time i+ 3.
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Time i− 1 i i+ 1 i+ 2 i+ 3
S

o
u
rc

e ai ai−1 ai ai+1 ai+2 ai+3

bi bi−1 bi bi+1 bi+2 bi+3

Xi = ai−2

+bi−1
Xi−1 Xi Xi+1 Xi+2 Xi+3

R
el

ay bi−1 bi−2 bi−1 bi bi+1 bi+2

ai−2 ai−3 ai−2 ai−1 ai ai+1

Yi = bi−3

+ai−3
Yi−1 Yi Yi+1 Yi+2 Yi+3

D
es

t. ai−3 ai−4 ai−3 ai−2 ai−1 ai

bi−3 bi−4 bi−3 bi−2 bi−1 bi

TABLE I: SWDF at rate 2/3 used over a network with N
(1)
1 =

N
(2)
1 = 1, T = 3. Symbols marked with the frame type belong

to the same block code.

Multi-node network with a single link between the nodes

(H = h, Lj = 1 ∀j ∈ {1, . . . , h+ 1}):

Denoting nmax , maxj∈{1,...,h+1}

(

T −
∑h+1

l=1,l 6=j N
(l)
1 + 1

)

and

OH ,
nmax⌈log (nmax)⌉

log(|F|)
, (1)

in [2], it was shown that when T ≥
∑h+1

l=1 N
(l)
1 SD-SWDF is

an
(

n
(1)
SD−SWDF, . . . , n

(H+1)
SD−SWDF, T −

∑h+1
l=1 N

(l)
1 + 1, T

)

F

streaming code which is
(

N
(1)
1 , . . . , N

(h+1)
1

)

-achievable

where

n
(j)
SD−SWDF , T −

h+1∑

l=1,l 6=j

N
(l)
1 + 1 + OH. (2)

In SD-SWDF, the transmission at each relay depends on the

erasure pattern of the previous nodes (hence an additional

header is added to allow nodes to decode symbols arriving

in different order). It was further shown that when N
(1)
1 ≥

N
(l)
1 , ∀ l > 1 SD-SWDF approaches the upper bound (derived

in [2]) when |F| → ∞ thus establishing capacity for this case.

For further details, see [2].

III. MAIN RESULTS

We present a coding scheme coined concatenated1 SD-

SWDF. While the suggested scheme is a straightforward

extension of achievable schemes for a single-link multi-hop

network, it nevertheless demonstrates the potential benefit of

utilizing all links (compared to choosing a single path). We

show that

Lemma 1. Denoting with N̄ (j) , 1
Lj

∑Lj

i=1 N
(j)
i , when T ≥

∑H+1
l=1 max(N(l)), the following rate is guaranteed

R = min
j





T + 1−
∑H+1

l=1 N̄ (l)

1
Lj

(

T + 1−
∑

l 6=j
N̄ (l) +OH

)



 , (3)

where OH is defined in (1).

1Concatenated codes have different meaning in the context of channel
coding. In our context, concatenation is similar to string concatenation.

We then provide an optimization method that is used to

further improve the achievable rate and provides non-trivial

insights.

Remark 2. The suggested achievable scheme (both with and

without the optimization) holds for any T >
∑H+1

l=1 min(N(l))
albeit, the overall rate can not be expressed in a compact form.

IV. ACHIEVABLE SCHEME - CONCATENATED SD-SWDF

Definition 6. A concatenation of an

(n′(1),n′(2), . . . ,n′(H+1)
, k′, T )F streaming code with

an (n′′(1),n′′(2), . . . ,n′′(H+1)
, k′′, T )F streaming code is an

(n′(1) + n′′(1),n′(2) + n′′(2), . . . ,n′(H+1)
+ n′′(H+1)

, k′ +
k′′, T )F streaming code with the following properties

• Let st = [s′t s
′′
t]
T be the input to the concatenated code

where s′t ∈ F
k′

and s′′t ∈ F
k′′

.

• Let {f
(1)′

t,i } and {f
(1)′′

t,i } be the encoding functions for

node S of the first and second codes respectively. The

encoding function of the concatenated code outputs
{[

f
(1)′

t,i (s0, s1, . . . , st), f
(1)′′

t,i (s0, s1, . . . , st)
]T

}L1

i=1

.

• Let {y
(j)
t,l }

Lj

l=1 denote the inputs to relay rj . Let {f
(j+1)′

t,i }

and {f
(j+1)′′

t,i } be the relaying functions for node rj
of the first code and second code respectively. The

relaying function of the concatenated code outputs
{[

f
(j+1)′

t,i ({y
(j)
t,l }

Lj

l=1), f
(j+1)′′

t,i ({y
(j)
t,l }

Lj

l=1)
]T

}Lj+1

i=1

.

• Let {y
(H+1)
t,l }

LH+1

l=1 denote the input to the

decoder of the concatenated code. Denote {ϕ′
t}

as the decoding functions of the first code and

{ϕ′′
t } as the decoding functions of the second

code. The output of the concatenated code is

ŝt =







ϕ
′

i+T

(

y
(H+1)
0 , . . . , y

(H+1)
t+T

)

︸ ︷︷ ︸

ŝ′t

, ϕ
′′

i+T

(

y
(H+1)
0 , . . . , y

(H+1)

t+T ′

)

︸ ︷︷ ︸

ŝ′′t







T

.

Corollary 1. Following Definition 5, we note that the rate of

the concatenated code is k′+k′′

maxj(n′(j)+n′′(j))
.

We denote concatenation of the same code M times as

transmitting this code with multiplicity M . Next, we formally

define a path over the relayed network.

Definition 7. In a relayed network with H + 1 nodes with

Lj links in the jth hop (1 ≤ j ≤ H + 1), the (unique) mth

path from the source to destination is defined as the set of

indices {i1m, i2m, . . . , iH+1
m } where 1 ≤ i1m ≤ L1, 1 ≤ i2m ≤

L2, . . . 1 ≤ iH+1
m ≤ LH+1, i.e., ijm is the index of the link

used in the jth hop by path m. For m 6= m′ there exists

1 ≤ h ≤ H + 1 such that ihm 6= ihm′ .

The suggested coding scheme transmits a concatenation of

multi-hop single-link SD-SWDF codes. Hence, we denote it as

CSD-SWDF.2 We note that the suggested scheme limits the re-

laying functions(f
(j+1)
t,i of Definition 1) to perform operations

2When a three-node multi-link network is considered, SWDF can be used.
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only on the “path level” (i.e. without “mixing” information

symbols from different paths). While this limitation to the

relay operation may not be optimal, it allows us to bound the

maximal size of the needed overhead and to derive closed-

form expressions for the guaranteed achievable rate.

Transmitting SD-SWDF streaming code over the mth path

is equivalent to transmitting
(

[0, . . . , 0, n
(1)
i1m

, 0, . . . , 0], . . . , [0, . . . , 0, n
(h+1)

i
h+1
m

, 0, . . . , 0],

T + 1−

h+1∑

l=1

Nilm
, T

)

F

streaming code where n
(j)

i
j
m

, T −
∑h+1

l=1,l 6=j N
(l)

ilm
+1+OH is

rewriting (2) using the indices which belong to path m defined

in Definition 7.

Proof of Lemma 1. Since CSD-SWDF transmits simultane-

ously
∏

s Ls codes over
∏

s Ls different paths without in-

teraction between the codes, and since each code used on

the mth path is (N
(1)
i1m

, . . . N
(H+1)

i
H+1
m

)-achievable it follows that

CSD-SWDF is (N(1), . . .N(H+1))-achievable.
From corollary 1 we have that the total number of informa-

tion symbols transmitted by the suggested scheme is

ktot =
∑

m

(T + 1−

h+1
∑

l=1

Nilm
)

=
∏

Ls · (T + 1)−
∏

s6=1

Ls ·

(

N
(1)
1 + · · ·+N

(1)
L1

)

− · · · −
∏

s6=H+1

Ls ·

(

N
(H+1)
1 + · · ·+N

(H+1)
LH+1

)

=
∏

Ls ·

(

T + 1−

H+1
∑

l=1

N̄
(l)

)

.

Noting that link i in hop j is part of
∏

s6=j Ls paths (in

the other
∏

s Ls −
∏

s6=j Ls paths, other links from this hop
are used. Hence, equivalently, it is assigned with packet size
zero), we further have from Definition 6 that the size of the
packet sent over link i in hop j is

n
(j)
i =

∑

m

n
(j)

i
j
m

=
∏

s6=j

Ls · (T + 1 +OH)−
∑

u 6=j

(
∏

s6=u,j

Ls) ·

(

Lu
∑

v=1

N
(u)
v

)

=
∏

s6=j

Ls · (T + 1 +OH)−
∑

u 6=j

(
∏

s6=u,j

Ls) ·
(

LuN̄
(u)
)

=
∏

s6=j

Ls ·



T + 1 +OH−
∑

u 6=j

(

N̄
(u)
)



 , n
(j)

(4)

Noting that the size of the packet sent over link i in hop j is
the same for all Lj links we have from corollary 1 that

R =
ktot

maxj n(j)

=

∏

Ls ·

(

T + 1−
∑H+1

l=1 N̄
(l)
)

maxj

(

∏

s6=j
Ls ·

(

T + 1 +OH−
∑

u 6=j

(

N̄(u)
)

)) .

Time i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5

x
(1)
i,1 [1] = ai ai ai+1 ai+2 ai+3 ai+4 ai+5

x
(1)
i,1 [2] = X X X X X X X

x
(1)
i,1 [3] = X X X X X X X

x
(1)
i,1 [4] = X X X X X X X

x
(1)
i,1 [5] = bi bi bi+1 bi+2 bi+3 bi+4 bi+5

x
(1)
1 [6] = ci ci ci+1 ci+2 ci+3 ci+2 ci+3

x
(1)
i,1 [7] = X X X X X X X

x
(1)
i,1 [8] = X X X X X X X

x
(1)
i,1 [9] = X X X X X X X

TABLE II: Transmission over the first link in the first hop,

concatenating SWDF codes sent between the source and the

relay over paths 1 and 2 (transmitting 3 bits of information

using a packet of size 9 bits), X stands for a parity symbol.

Symbols marked with the frame type belong to the same block

code.

A. Example

Consider a network with three nodes with two links con-

necting each node, where N(1) = [3 2], N(2) = [2 1] and

T = 5 which is depicted in Figure 2. This network can be

decomposed into four paths, as also depicted in Figure 2. We

note that since in all these paths N1 ≥ N2 SWDF achieves the

optimal guaranteed rate (per path). Transmitting only on the

best path (which is path 4 in this example) results in R = 3/5.

Another simple coding scheme is to transmit SWDF code

over non-overlapping paths. In the network depicted in Fig-

ure 2 it amounts to transmitting over paths 1 and 4 or 2 and

3. Both options result in R = 4/5.3

Applying the suggested scheme amounts to transmit on

each path (single-path capacity-achieving) SWDF code and

concatenate the codes transmitted over each link. The codes

used are

Path 1 :([4, 0], [3, 0], 1, 5)F; Path 2 :([5, 0], [0, 3], 2, 5)F;

Path 3 :([0, 4], [4, 0], 2, 5)F; Path 4 :([0, 5], [0, 4], 3, 5)F,

which result in a ([9, 9], [7, 7]), 8, 5)F streaming code with R =
1+2+2+3
max(9,7) = 8

9 .

Table II describes the packets sent over the first link of

the first hop (assuming the source wishes to send 9 bits

[ai, bi, ci, Ai, Bi, Ci, Di, Ei, Fi] at each time instance).

B. An improved coding scheme

The basic scheme transmits SD-SWDF code over each path.

A natural extension to this scheme is to study transmitting SD-

SWDF with different multiplicities on different paths.

We note that the improved scheme does not require addi-

tional headers when SD-SWDF code is used per path. When

an erasure occurs, it’ll occur simultaneously to all the codes

transmitted over this link. Thus, a single header is needed (per

path) to allow each node to perform its operations. Specifically,

3Definition 5 suggests that transmitting SWDF (or SD-SWDF) over all non-
overlapping paths might not improve upon transmitting over the best path.
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5

Path 1

Path 2

Path 3

Path 4

Fig. 2: Three-node network with two links between each node,

N(1) = [3 2], N(2) = [2 1], T = 5, each link is marked with

a unique line type, decomposed into four paths.

the number of the required headers is the same as in the basic

scheme (one header per one path).

Denoting with cm the multiplicity of the code used in the

mth path, the total number of information symbols transmitted

by the suggested scheme is

ktot =
∑

m

cm(T + 1−

h+1∑

l=1

Nilm
),

and the size of the packet sent over link i in hop j is

n
(j)
i =

∑

i
j
m=i

cmn
(j)
ij,m

.

We note that when different multiplicity per path is used,

the size of the packet transmitted over different links which

belong to the same hop is no longer the same (as was the

case in (4)). Hence, denoting n(j) =
[

n
(j)
1 , . . . , n

(j)
Lj

]

, using

Definition 5 the achievable rate of the optimized scheme is

R = max
cm,1≤m≤

∏
Ll

ktot

maxj
(
max(n(j)

) .

This can be converted to the following (convex) optimiza-
tion problem

max
c̃m

ktot

D
Where : 1) 0 ≤ c̃m ≤ 1 2)

∏

l Ll
∑

m=1

c̃m = 1

3) D ≥ n
(j)
i , 1 ≤ j ≤ H + 1, 1 ≤ i ≤ Lj ,

which is tractable for some practical examples, as we demon-

strate below. We note that this is a convex problem since both

ktot and D are positive (all n
(j)
i are positive and there is at

least one n
(j)
i > 0).

The amount of multiplicity to use per path is derived by

taking ci = ⌊c̃i · c⌋ where c is a constant (same constant for

all c̃i) chosen to trade performance with overall packet size.

For the network depicted in Figure 2, not transmitting
on path number 1, and transmitting on paths 2, 3, 4 with
multiplicities of 8, 5, 4, i.e, the codes used are

Path 1 :([0, 0], [0, 0], 0, 5)F; Path 2 :([40, 0], [0, 24], 16, 5)F;

Path 3 :([0, 20], [20, 0], 10, 5)F; Path 4 :([0, 20], [0, 16], 12, 5)F,

which results in a ([40, 40], [20, 40], 38, 5)F streaming code

with R = 16+10+12
max(40,20) = 0.95 (which improves upon R = 8/9

achieved with multiplicity 1 for all paths).

Remark 3. Sometimes the optimization suggests not to trans-

mit anything over some links. For example, in a three-node net-

work with two links between each node, N(1) = [5 4], N(2) =
[2 1], T = 7, the optimization results in not transmitting over

the first link in the 2nd hop (N
(2)
1 = 2). Since concatenation

results in a rate that is lower than each of the original rates,

forcing transmission through paths that include this link will

result in a degradation in the overall guaranteed rate. The

average performance of the scheme can be further improved

by using repetition on links with packet sizes smaller than the

maximum (by gaining diversity). This requires a modification

in the header to indicate which symbols arrived at each link.

Hence, careful analysis of this scheme is left for further study.

V. NUMERICAL RESULTS

Figure 3 depicts the ratio of the guaranteed rate achieved

by the CSD-SWDF scheme and the guaranteed rate achieved

by transmitting over a single (best) path. We further plot the

ratio of using the optimized scheme described in Section IV-B.

We plot the cumulative distribution function (CDF) of 1000

four-node relayed networks with two, three and four links

between each node. The maximal number of erasures per link

is randomly chosen (between 1 to 10) and the overall delay

constraint is taken as T =
∑

j max(Nj). The rate of the

optimized scheme was found using CVXPY [18]. Using the

suggested coding scheme results in a significant improvement

compared to using a single path, and, as expected, the gain

increases as the overall number of paths increases.
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Fig. 3: The ratio between the guaranteed rates of CSD-SWDF

and single (best) path transmission over four-node relayed

network with various number of links between each node.
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